
Canted-paramagnetic boundary of anisotropic antiferromagnets in a field of arbitrary direction

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys.: Condens. Matter 1 7433

(http://iopscience.iop.org/0953-8984/1/40/017)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 10/05/2010 at 20:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/1/40
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 1 (1989) 7433-7438. Printed in the UK 
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Abstract. A general asymptotic expression for the low-temperature, canted-paramagnetic 
boundary of a single-ion uniaxial antiferromagnet is obtained as a function of the angle 
between the external magnetic field and the easy axis. If this angle is other than zero it is 
shown that in general the critical field behaves asymptotically as a T z  law. Depending on the 
values of this angle and of the anisotropy parameter a T3/2 dependence can be observed for 
experimentally accessible low temperatures. These results are considered for the uniaxial 
antiferromagnetic NiCI, 6H20. 

1. Introduction 

The phase boundary between the spin-flop and paramagnetic phases of anisotropic 
antiferromagnets has been the subject of several experimental and theoretical inves- 
tigations in recent years. For uniaxial antiferromagnets, the critical magnetic field along 
the easy direction behaves asymptotically according to a T3I2 law (Anderson and Callen 
1964, Feder and Pytte 1968, Oliveira Jr et a1 1978). On the other hand, for transverse 
anisotropies this asymptotic dependence changes to T2 (Cieplak 1977, Figueiredo and 
Salinas 1984). If the field is applied normal to the easy axis the dependence of the critical 
magnetic field on temperature follows a law even for uniaxial antiferromagnets 
(Becerra et aZl988). 

In this paper a calculation is reported for the canted-paramagnetic boundary of a 
uniaxial antiferromagnet in a field at an arbitrary angle to the easy magnetic axis of the 
system. It is shown that whatever the angle 8 between the magnetic field and the easy 
axis, the paramagnetic critical field behaves asymptotically as 71. However, depending 
on the relative values of the anisotropy and of the angle 8, a T3l2 dependence can be 
observed for experimentally accessible low temperatures. This is possible because the 
energy spectrum of magnons can become quadratic in the wavevector in this region. 
These results are applied to the predominantly uniaxial antiferromagnetic crystal 
NiC1, - 6 H 2 0 .  
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SC. Brazil. 

0953-8984/89/407433 + 06 $02.50 @ 1989 IOP Publishing Ltd 7433 



7434 W Figueiredo 

2. Calculation 

We consider the following spin-Hamiltonian on the paramagnetic phase of an anti- 
ferromagnet: 

where J is the exchange interaction between nearest-neighbour pairs of spins on a simple 
cubic lattice, and D is a single-ion uniaxial term (D < 0). The last sum is the usual 
Zeeman term and the field H is at an angle 8 with respect to the easy direction z .  In the 
paramagnetic phase we must consider the elementary excitations of the system around 
the equilibrium positions of the spins. First, the spin axes are rotated an angle cp about 
they direction. The magnetic field is in the xz plane, and the new axis of quantisation is 
z', which is at an angle Q, to the easy direction. The following transformation is obtained 
for the spin operators: 

S: = S:' cos Q, + S:' sin cp 

s.y = sp' (2) 
S: = S:' cos Q, - S:' sin cp. 

Now, defining the raising and lowering spin operators 
S? = SX' 5 i SY' 

I I I (3) 
introducing the Holstein-Primakoff representation 

s" = s - a + a .  
I I 1  

st = (2S)'/2f,(S)Ui (4) 
s i  = (2S)'/2a:fj(s) 

and taking the Fourier transform of the creation and destruction operators of spin 
deviations U /  and a,, the following expression for the Hamiltonian up to terms of order 
S-' is obtained: 

x = x(j + x2 + x4 ( 5 )  

+ SD sin2 y(a:+,,+,ak@,a, + ~:-,-~a:a:a,>}. 

In these equations, N is the number of lattice points and 

is the structure factor for the z nearest neighbours on a simple cubic lattice. 
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We can determine the equilibrium positions of the spins by minimising "eo with 
respect to the angle Q,. We then obtain 

(SD/guBH)sin(2q) + sin(6 - q) = 0. (10) 
Only if SD/guBHe 1, we will have Q, = 8. In this approximation "eo represents the 
classical ground-state energy of an antiferromagnet in its paramagnetic phase. The spin- 
wave excitations will then be generated from the deviations around the equilibrium 
positions of the spins, given by the angle Q, in (10). Within this approximation it is easy 
to show that the terms with one and three spin-wave operators, which appear due to the 
rotation of the spin axes, are eliminated from the spin-wave Hamiltonian. 

The magnon energy spectrum can be determined by solving the equations of motion 
for the Green functions (Zubarev 1960) ((ak; a:)) and ( (ack ;  U:)), where k and r are 
vectors of the first Brillouin zone. These equations have been decoupled by the appli- 
cation of Wick's theorem (Tyablikov 1967) to the four point averages. Other approxi- 
mations could be used to break the chain of Green functions like the 'Callen decoupling' 
(Anderson and Callen 1964) but the problem would become very difficult to handle and 
the results in the very low temperature region are essentially the same as in the random 
phase approximation which is used here. We then have 

((a&; a:)) = (a/c,r/2n)[(E + Ak)/(E2 - G)I 
( ( a + _ k ;  a:)) = - (ak,r/2n)Bk/(E2 - E;)  

Ek = (A: - B2)lI2 

(1la) 

(116) 

(12) 

where the magnon energy spectrum is given by 

and 

A k  = zSJ(v, - 1) + (2s  - 1)D($ sin2 Q, - 1) +guBHcos(6 - Q,) 

+ 16SD($ sin' q - l)](aTu,)} (13) 
1 

Bk = (S - a)D sin2 q - - 2 (6SD sin' q(a: a,) 
4SN , 

+ [2zSJ(uk + U, - 2uk+,) + 8SD(3 sin2 q - 1)](ara-,)}. (14) 
We also have 

and 

(aka-&> = -(&&&)(I + 2mk) 

mk = [exp(E,/kB T )  - 11-1 

(16) 

(17) 

where 

is the magnon occupation number. 
The magnitude of the canted-paramagnetic critical field Hc( T ,  6 )  is detemined by 

the limit of stability of the paramagnetic phase, namely by the equation 
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Eko(T ,  H ,  8 )  = 0, where the vector ko labels the corners of the first Brillouin zone. 
Neglecting small zero-point corrections (Cieplak 1977), the asymptotic form of the 
critical field at low temperatures is given by 

H,(T,  e> = HC(0, 0) - AHC(T7 8 )  (18) 
where 

gu,H,(O, 6 )  = [12SJ - (2s - l)D($ sin2q - 1) - S(l - 1/4S)D sin2 q]/cos(0 - q) 

(19) 
and 

gugAH,(T,  0)  = (35(2)/23’2.n2) 

x {[U- D(2 sin2 Q) - l)]/[-(1- 1/4S)(D/J) sin2 Q , , ] ~ / ~ }  

x [i/cos(e - F ) ] ( k B  T/SJ)’ (20) 
where we have put z = 6 for a simple cubic lattice and 5(2) = 2:= n - 2 .  As we can see, 
the paramagnetic critical field varies asymptotically as p, if the angle between the 
external magnetic field and the easy axis is other than zero. In the case where 8 is equal 
to zero, the magnon energy spectrum becomes quadratic around the corners of the 
Brillouinzone, and we obtain the well known result for the critical field (Feder and Pytte 
1968) 

3. Discussion and conclusions 

The magnon energy spectrum for non-interacting spin-waves near the corners of the 
first Brillouin zone is given by 

E ,  = (izSJq2 +2SIDl(1- 1/4S) sin2 q)1i2(QzSJ)1/2q 

QzSJq2 + 2SlDi(l - 1/4S) sin2 Q, 

(22) 
where the vector q is measured from the corners of the Brillouin zone. We can consider 
the energy spectrum to be quadratic if 

(23) 
that is 

sin’(q(0)) < Eq/2S(1 - 1/4S)/D1 

where Q) as a function of 8 is given by (10). 
It is worth mentioning that a quadratic spectrum gives a T3/’ dependence for the 

critical field, while a linear spectrum gives a T2 dependence (Figueiredo 1984). In this 
way, a T3i2 dependence can be observed for angles between the magnetic field and 
the easy axis which satisfy the inequality (24). In order to compare this result with 
experimental data we must relate the energy spectrum with temperature. Considering 
that to excite a magnon of energy E, we must have a thermal energy of order kBT (that 
is, E, = k B T ) ,  we can write the inequality (24) in the following form: 

sin(q(0)) Q [ k B ~ / 2 ~ ( 1 ‘ -  1/4~)1~11’/2. (25) 

If D + 0, we can note that the inequality (25)  is satisfied by all the angles between 0” and 
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90". In this case the paramagnetic critical field always exhibits a PI2 dependence. This 
result was to be expected on physical grounds because an isotropic antiferromagnet does 
not present any privileged direction. 

We now apply the former inequality to NiClz - 6H20 ,  which is a single-ion uniaxial 
antiferromagnet. For this crystal in its paramagnetic phase at low temperature, we 
always have SIDI/guBH < 0.07, and (10) gives cp s 8. Therefore, the inequality (25) 
applied to NiC12 6H20 ,  becomes 

8 Q ~in- '(T/2.42) ' /~.  

For this antiferromagnet the observed dependence of the critical field on temperature 
is of the form T3I2 in the accessible low-temperature range, that is, T larger than 0.3 K 
(Oliveira Jr et a f  1978). For this temperature, the inequality (26) gives f3 Q 20". Even if 
the alignment between the external field and the easy axis is not perfect, we expect a 
behaviour of the type T3l2 for temperatures larger than 0.3 K. On the other hand, if new 
measurements are performed on this antiferromagnet at very low temperatures, for 
instance, T < 0.1 K ( T  = 0.1 K, 8 Q 11') the PI2 law can be observed only for an almost 
perfect alignment of the field with the easy axis. If this perfect alignment is not obtained, 
we expect a P-dependence for T < 0.1 K. 

We conclude by saying that if 8 is other than zero, the canted-paramagnetic critical 
field behaves asymptotically according to a P law for uniaxial antiferromagnets. We 
know that the alignment of the field with the easy axis is of fundamental importance in 
order to observe the spin-flop transition. Here, we also note that the determination of 
the canted-paramagnetic boundary as a function of the temperature depends on this 
same alignment. The inequality (25) serves as our guide in this case because it relates 
the magnitude of the anisotropy, the absolute temperature and the angle 8 between the 
external magnetic field and the easy magnetic axis. As far as this author knows the 
measurements on the paramagnetic phase boundaries of antiferromagnets are usually 
made with the field parallel or perpendicular to the easy crystalline axis. See, for instance, 
the measurements performed on NiC12 * 4H@ (Becerra et a1 1988), on MnCl, . 4 H 2 0  
(Rives and Benedict 1975) and on C0C12 - 6 H 2 0  (Rives and Bathia 1975). It would be 
interesting to do new measurements on the canted-paramagnetic phase boundarir of 
anisotropic antiferromagnets, now as a function of the temperature and of the angle 8, 
in order to test the validity of these arguments. 

Acknowledgments 

The author wishes to thank Drs F Bassani and N Majlis for their kind hospitality at 
Scuola Normale Superiore, Pisa. Thanks also to Conselho Nacional de Desenvolvimento 
Cientifico e Tecnologico (CNP,) Brazil for the fellowship. 

References 

Anderson F B and Callen H B 1964 Phys. Rev. 136 A1068 
Becerra C C, Oliveira Jr N F, Paduan-Filho A, Figueiredo W and Souza M V P 1988 Phys. Rev. B 38 6887 
Cieplak M 1977 Phys. Rev. B 15 5310 
Feder J and Pytte E 1968 Phys. Rev. 168 640 
Figueiredo W 1984 J .  Phys. C: Solid State Phys. 17 2777 
Figueiredo W and Salinas S R 1984 Physica B 124 259 



7438 W Figueiredo 

Oliveira N F Jr, Paduan-Filho A, Salinas S R and Becerra C C 1978 Phys. Rev. B 18 6165 
Rives J E and Bathia S N 1975 Phys. Rev. B 12 1920 
Rives J E and Benedict V 1975 Phys. Rev. B 12 1908 
Tyablikov S V 1967 Methods in the Quantum Theory of Magnetism (New York: Plenum) 
Zubarev D N 1960 Sou. Phys.-Usp. 3 320 


